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Abstract 

New techniques have been recently developed that allow unstructured, free meshes 
to be embedded into standard 3-dimensional, rectilinear, finite-difference time- 
domain grids. The resulting hybrid-grid modeling capability allows the higher res- 
olution and fidelity of modeling afforded by free meshes to be combined with the 
simplicity and efficiency of rectilinear techniques. Integration of these new meth- 
ods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle- 
In-Cell (PIC) code provides new modeling capability for a wide variety of electro- 
magnetic and plasma physics problems. To completely exploit the integration of 
this technology into QUICKSILVER for applications requiring the self-consistent 
treatment of charged particles, this project has extended existing PIC methods for 
operation on these hybrid unstructured/rectilinear meshes. Several technical issues 
had to be addressed in order to accomplish this goal, including the location of par- 
ticles on the unstructured mesh after transport, the allocation of each particle’s cur- 
rent and charge to the unstructured mesh, adequate conservation of charge, and the 
proper handling of particles in the transition region between structured and 
unstructured portions of the hybrid grid. 
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Introduction 

A significant impediment to the use of time-dependent, full-wave electromagnetic (EM) 
codes for the simulation of moderately complex devices is the limited resolution that can be 
achieved affordably with currently available computers. This is particularly true in three 
dimensions, where even small improvements in resolution quickly consume available 
processor and memory resources for conventional structured-grid, rectilinear finite-difference 
algorithms. When such codes are extended to self-consistently treat the motion of charged 
particles using Particle-in-Cell (PIC) methods,l the conventional rectilinear-grid approach, 
because of its “stair-stepped” approximation of complex surfaces, limits our ability to resolve 
particle motion near such surfaces accurately. 

In order to circumvent this problem, previous work has focused on the development of 
entirely new algorithms based upon both structured non-orthogonal grids2>3 and unstructured 
grids. 4’5 However, these approaches have shortcomings, most notably that the considerable 
investment in existing rectilinear-grid codes is lost and that, for most applications, the added 
overhead of unstructured grids is wasted on all but a small fraction of the simulation volume. 
However, new techniques have been recently developed that allow unstructured, free meshes 
to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids.6 
The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of 
modeling afforded by free meshes to be combined with the simplicity and efficiency of 
rectilinear techniques. 

This report details the issues and methods involved in extending standard PIC 
techniques to a hybrid grid. This has been accomplished by modifying the rectilinear 
structured “d PIC code QI_llCKSILVER7’8 to include the unstructured-grid EM solver 

F VOLMAX6’ ’10 and then generalizing and extending QUICKSILVER’S particle handling methods 
to the unstructured grid. This extension presented many challenging problems that needed to 
be solved before a satisfactory implementation could be achieved. These problems included 
the space-charge-limited emission of particles, locating particles on the unstructured grid after 
transport, allocating each particle’s current and charge to the mesh, adequately conserving 
charge, and proper particle treatment in the transition regions between structured and 
unstructured portions of the hybrid grid. 

Background 

The work described in this report is built upon the two Sandia-developed simulation 
codes: QUICKSILVER and VOLMAX. A brief summary of the capabilities and features of those 
two codes follows. 

QUICKSILVER: A Time-Dependent, Finite-Difference EM PIC Code 

QUICKSILVER is a three-dimensional (3D), time-dependent, EM PIC code whose field- 
solving algorithm is based upon a finite-difference formulation of Maxwell’s equations on a 
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multiple-block, rectilinear structured grid. A structured grid is one in which every grid 
element is associated with its nearest neighboring grid elements though a logical mapping to a 
three-dimensional cubical lattice. A rectilinear structured grid also has the property that its 
elements are arranged conformal to a standard orthogonal coordinate system;, e.g., 
QUICKSILVER’S grid is conforrnal to Cartesian, cylindrical, or spherical coordinates. Other 
codes (see, for example, Refs. 2 and 3) are implemented on more general structured grids that 
are neither coordinate-system-conformal nor orthogonal. By multiple block, we mean that the 
grid is composed of logically connected blocks, each of which is a coordinate-system- 
conformal region of space with its own local grid. Each block has a small region of overlap 
(two cells) with its neighboring blocks which allows the fields in each block to be advanced in 
time independently; the fields at the outer edges of a block are then supplied as a boundary 
condition from the overlap region of the appropriate neighboring block. 

QUICKSILVER is actually a suite of codes; in addition to the main simulation code there 
are several support codes. The problem geometry is generated using various preprocessors and 
the simulation results are examined with one or more postprocessors. ‘l’he original MERCURY 
command-driven preprocessor assists the user in defining the mesh, boundary conditions, and 
other input parameters. Recently, a set of widget-based tools has been developed to further 
simplify the process of mesh generation. These widget-based tools, built upon the IDL data 
analysis and visualization too17 have been incorporatedinPFIDL11, QUICKSILVER’S primary 
simulation data postprocessor. In its role as postprocessor, PFIDL provides the capability to 
manipulate and examine 3D scalar and vector field data as well as 6D particle phasespace 
data. Additionally, PFIDL can be used to examine and manipulate time histones of various 
simulation quantities. AVS$ is used for the visualization and/or animation of field and particle 
distributions as well as the 3D model geometry. These pre- and postprocessing tools are 
available on a wide variety of platforms. The potentially vast amount of simulation data is 
shared between the simulation code and the postprocessors via the Portable File Format 
(PFF)12, a portable, compact, machine-independent binary file format developed expressly for 
the QUICKSILVER suite but widely used for many other applications. 

Generating input data for three-dimensional simulations can be difficult, 
time-consuming, and error-prone. MERCURY is a command-driven preprocessor that is used in 
defining the finite-difference grid, the problem geometry, the boundary conditions, and other 
input parameters. MERCURY allows free-format input and provides menus for guiding 
simulation setup and on-line help. It processes all input for a QUICKSILVER simulation and 
checks for errors and inconsistencies. QUICKSILVER uses a nonuniform, multiple-block, 
rectilinear grid with staggered grids. The MERCURY grid generator provides straightforward 
tools to facilitate the generation of these multi-block, nonuniform grids, automatically 
ensuring that the grid is both continuous and smoothly varying. Cartesian, cylindrical, and 
spherical coordinate system multiple-block grids can be generated. Conducting and dielectric 
volumes are easily generated with MERCURY by combining (sequentially adding or removing) 
objects selected from a provided set of simple solid-object primitives. MERCURY then fits the 
resulting compound volume description to the simulation’s underlying finite-difference grid. 

‘IDL is a product of Research Systems, Inc., 2995 Wlldemew Place, Suite 203, Boulder, Colorado 80301. 
*AVS is a product of Advanced Visual Systems, 300 Fifth Ave., Waltham, MA 02154. 

● 

8 



MERCURY also computes the memory requirements for arrays in QUICKSILVER so that only the 
rninirnum memory required for a simulation is used. 

In addition to MERCURY’S capabilities, widget-based tools have been added to PFIDL to 
ease some of the more difficult facets of simulation setup. For example, since often a 
description of the problem geometry is available from solid modeling or CAD tools, PFIDL 
currently has a tool for editing DXFt or ACIS$ files and converting them to a format 
compatible with MERCURY. 

QUICKSILVER, the member of the suite J 
for performing 3D physics simulations, can 
be divided into two distinct parts, the field 
solver and the particle handler. The 
QUICKSILVER field solver utilizes 

“ “ 1s,14 and ~Pficit15 finite-difference, (iJ+l,k+l)_=- expllclt 
leap-frog algorithms. A single cell of a 
QUICKSILVER grid is depicted in Figure 1, 
which shows the staggered spatial locations . . . 
of the electric and magnetic field 

, , , . . 

components in the differencing algorithm. 
The 1, J, and lK subscripts on the field 

. 

components indicate the corresponding 
coordinate direction in one of the three 
supported coordinate systems. Multiple 
lossy, non-dispersive dielectrics are allowed 
for regions without particles. Available 

“w”” 
(i+lJk+l) 

boundary conditions include conductors, Figure 1. Spatial location of electric and 
inlet and outlet boundaries, mirror magnetic field components in a single cell 
symmetry, and periodic symmetry. of the QUICKSILVER grid. 

Currently, inlet wave boundaries can be 
driven either with multiple, independent TEM modes or a lD, multi-line Telegraphers’ model. 
In both cases, outgoing waves are treated with a lst-order Mur-like16 radiation-absorbing 
boundary condition. 17 The code also supports other outlet boundary conditions, i.e., 2nd-order 
dispersive 18 and the Perfectly Matched Layer (PML). 19 QUICKSILVER also has models for 
embedded current source excitation and surface impedance boundary conditions. 

The second major portion of the QUICKSILVER code is its particle handler, whose job is to 
advance particle positions with 3D, fully-relativistic kinematics and to subsequently allocate 
each particle’s contribution to the current back to the finite-difference grid for use by the field 
solver. QUICKSILVER’S particle handler allows multiple particle species with particle creation 
via preloading, beam injection and space-charge-limited (S CL) field emission. It supports the 
same boundary conditions and coordinate systems as the field solver. Currently the code uses 

‘DXF is a registered trademark of Autodesk, Inc., 111 McInnis Parkway, San Rafael, California 94903. 
*ACIS is a registered trademark of Spatial Technology, Inc., 2425 55th St., Bldg. A, Boulder, Colorado 

80301. 
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a current/charge density allocation algorithm that locally conserves charge exactly. 

The QUICKSILVER code has a wide variety of diagnostics available to the user which can 
be divided into two basic types: snapshots and time histones. Snapshot diagnostics provide 
detailed spatial information about some simulation quantity at specified instants of time (or 
averaged over specified intervals of time). On the other hand, time histones provide, as a 
function of time, a simulation quantity at a fixed spatial location or integrated over some 
spatial region of the simulation. QUICKSILVER can provide snapshots of both vector and scalar 
field quantities as well as snapshots of simulation particles in 6D phasespace (x, y, z, pm py 

p,), or a subset of that phasespace. Time histories can be requested for p or any component of 
E, B, or J at any spatial location in the simulation. In addition, line, surface, and volume 
integrals are available, each over one or more coordinate-conformal subpaths, subareas, or 
subvolumes, respectively. Tne histories are also available for several particle-related items, 
including coun~ energy, or charge of surviving, created, or killed particles, by species. To 
examine simulation charge conservation, maximum and RMS values of the error in charge 
conservation (V . D – p ) are also available as time histories. 

VOLMAX: An Unstructured Grid, Time-Dependent, Finite-Volume 
EM Simulation Code 

VOLMAX is a three-dimensional 
transient volumetric Maxwell equation 
solver that operates on standard rectilinear 
finite-difference time-domain (FDTD) grids, 
non-orthogonal, unstructured finite-volume 
time-domain (FVTD) grids, or a 
combination of both types (hybrid grids). 
The algorithm is fully explicit. Systems are 
typically simulated by embedding multiple 
unstructured regions into a simple rectilinear 
FDTD mesh. Boundary conditions are 
supplied to the system on the exterior FDTD 
mesh. A wide variety of boundary 
conditions are available on the structured 
grid, comparable to those described for 
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Figure 2. The vow hybrid grid interface. 

QUICKSILVER in the previous section. The grid types are fully comected at the mesh interfaces 
without the need for complex spatial interpolation. The approach permits detailed modeling of 
complex geometry while mitigating the large cell count typical of non-orthogonal cells such 
as tetrahedral elements. To further improve efficiency, the unstructured region carries a 
separate time step that sub-cycles relative to the time-step used in the FDTD mesh. A cross 
section of the interface between the FVTD and FDTD grids is shown in Figure 2. The 
“wrapper layer” is a hexahedral region that encloses the unstructured grid and provides nodal 
connectivity to the surrounding FDTD mesh. The wrapper is constructed automatically based 
on the unstructured-grid topology. The unstructured region may consist of a single rectangular 
block, or be of a multiple, block-on-block form. 
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As shown in Fig. 2, VOLMAX is based on a staggered grid formulation. Primary and dual 
grids are used. The dual grid is constructed automatically based on the topology of the user- 
specified primary grid. Note that the wrapper layer consists of rectangular cells for its primary 
grid, but the dual cells on the wrapper inner boundary are generally non-orthogonal. As a 
consequence, the wrapper layer is common to both the FVTD and FDTD grids. For the case 
that the unstructured-grid consists of uniform rectangular elements, the algorithm is 
equivalent to the FDTD algorithm used by QUICKSILVER (even though the cells are referenced 
in an unstructured reamer) and is second-order accurate both in space and time. 

For the unstructured portion of the mesh, VOLMAX must maintain a database that 
describes the various properties of the elements of the mesh as well as the relationships 
between mesh elements that describe the mesh’s connectivity. This is accomplished by 
maintaining a list for each primary cell of the primary faces that enclose that cell. Then, for 
each primary face, it maintains a list of the primary edges that define that face. Finally, for 
each primary edge, there is a list of the two primary nodes defining the edge. Similar lists 
describing the relationships of the dual mesh elements are maintained. To relate the primary 
and dual grids, mappings between their corresponding elements are also maintained. For 
example, for each primary cell there is a corresponding dual nod~ for each primary face there 
is a corresponding dual edge, etc. Note that this means, for example, that to find the primary 
nodes of a primary cell, you must successively traverse the list of faces for that cell, then the 
list of edges for each face, and finally, the list of nodes for each edge. The VOLMAX database 
also contains property information, such as cell volumes, face areas and normals, node 
location, etc. 

The field advancement scheme for the VOLMAX hybrid mesh is the following. The 
electric fields in the FDTD region are initially advanced based on time step, At. On the outer 
boundary of the w-rapper, the tangential electric fields are second-order time interpolated to 
provide a Dirichlet boundary condition for the FVTD region. The electric and magnetic fields 
in the FVTD region are advanced an integral number (ZVU) of sub-time iterations relative to At. 
At the completion of the sub-cycling, the tangential electric fields on the inner boundary of the 
wrapper are used to provide a Dirichlet boundary condition to complete the magnetic-field 
advancement in the FDTD region. An alternative scheme could map the magnetic fields in the 
wrapper layer into the respective FDTD locations after the FDTD magnetic fields are 
advanced in time. 

VOLMAX is currently integrated to the commercial CAD package SDRC I-DEAS+. Solid 
model design, mesh generation, and post-processing are all accomplished through the I-DEAS 
interface. Electromagnetic properties, such as voltage sources, local boundary conditions, 
current observers, input and output ports, slots, wires, etc., are implemented by assigning 
nodal attributes. The file containing the primary grid generated by I-DEAS is input into the 
VOLMAX preprocessor, PREVOL, which builds the wrapper layer, completes the connectivity 
for the primary grid, and constructs the dual grid. Grid construction by PREVOL is 
accomplished at the rate of 50,000 to 100,000 cells/minute on a single, high-end processor.20 
Construction time scales linearly with cell count. 

‘1-DEAS is a product of Structural Dynamics Research Corporation, Milford, Ohio. 
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Outline of Report 

The development required to extend PIC methods to hybrid grid EM solutions can be 
divided into three distinct categories. First, the new issues associated with pushing particles on 
unstructured grids must be addressed. This includes determining a particle’s new location on 
the mesh after it has been advanced in space, interpolation of mesh quantities to and from a 
particle’s position, and dealing with new complications regarding the non-conservation of 
charge. Second, these additions and modifications must be properly synchronized in time. A 
third category involves particle treatment and significant new complications in field continuity 
at the hybrid grid interface. Each of these areas will be elaborated in detail in subsequent 
sections of the report. Additionally, there will be sections describing algorithm testing and 
performance as well as a short discussion of current status and future direction. 

● 

✎ 
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Unstructured Grid Particle Handling 

There are several specific components of any algorithm that handles the motion of PIC 
particles and their interaction with the fields on the underlying computational mesh. In this 
section, we will address the issues and complications associated with extending each of these 
components to properly treat particles when the underlying grid is unstructured. To the extent 
possible, we will defer until later in the report discussion of the integration of these 
components with each other as well as their integration with their structured-grid counterparts. 

Particle Location on Unstructured Mesh 

In a PIC code, it is important to be able to determine a particle’s location relative to the 
grid so that the particle’s effect upon field quantities defined on the grid and the effect of the 
fields on the particle can be ascertained. In typical PIC codes on rectilinear, structured grids, 
determining a particle’s location (what cell is it now in) after its position has been advanced in 
time is a straightforward, almost trivial exercise — typically a particle is constrained to move 

21 of the field solution, so we simply no more than one cell by Courant stability requirements 
need to check if it crossed the upper or lower cell boundary in one or more of the three 
coordinate directions. If it has left the cell, we can easily determine into which cell it has 
moved because of the underlying implied grid connectivity due to the separability of the grid 
in the three coordinate directions. 

Contrast this to the same question on an unstructured grid. As with the rectilinear grid, 
we can determine if a particle has left a cell by checking if it has crossed any one of the faces 
of the cell. However, since the faces are not in general conformal to the coordinate system, 
testing for this condition is much more complicated and time-consuming than the simple 
comparison of one component of the particle’s spatial position with a cell grid value. In 
addition, faces with more than three nodes are in general not planar, so even the concept of 
upon which side of a face a particle resides is not clearly defined without a convention for 
subdividing such a face into a set of planar facets. 

The prescription for 
determining whether or not a 
particle is beyond one of a cell’s 
faces is straightforward for 
planar faces. If a vector VP is 
constructed from any point in 
the plane of the face (e.g., one of 
the face’s nodes) to the particle 
location, and the dot-product of 
this vector with the face’s 
outward normal is positive, then 
the particle is beyond that face. 

&3 --- / 
/. 
\ 

x 
\ 

\ 

\ 

Figure 3. 2D example of using dot products to determine 
upon which side of a face a particle is located. 

This is shown in 2D in Figure 3, which graphically shows the positive dot product of the test 
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vector Vp with the normals of two of the three faces. Note that the dot product with the third 
face’s outward normal is clearly negative. In the special case that a particle is located precisely 
in the face between two cells, there is a potential for floating point roundoff to cause problems. 
The worst scenario is that due to roundoff the algorithm would determine the particle to be 
slightly outside of both cells, and any algorithm to find the cell containing the particle would 
certainly fail. One the other hand, if the particle were so close to a face that both cells sharing 
the face would claim the particle, it would not really matter to which cell the particle was 
assigned. As will be seen in the next section, the particle’s weighting factors to nearest nodes 
would be essentially the same since the only non-vanishing weights would be to the nodes of 
the shared face. Consequently, the actual algorithm to determine if a particle is outside a cell 
compares the face dot-products to a small positive value (small compared to the average 
length of grid edges) rather than to zero. 

Once it has been determined that a particle is beyond one or more of the original cell’s 
faces, we still must find in which cell the particle now resides. Since cells in an unstructured 
grid aren’t arranged in a lattice, we require a mapping from each celI’s face to the neighboring 
cell that shares that face. (Such a mapping is available in the VOLMAX code). However, it is 
possible that the particle is not in the neighboring cell, so we must go through the same 
process of comparing particle position to the new cell’s faces to find if the particle is in that 
cell, or if not, another cell in which to look. This process is continued until we find a cell 
containing the particle. We will use the obvious strategy to optimize such a search of choosing 
the next cell in the search based upon which dot product was most positive. 

This is best illustrated by example. Figure 4 shows a simple 2D example of a portion of 
an unstructured grid. Also shown is a particle that has moved from xi in cell 1 to xf in cell 4 
along a straight path. Note that its final position is beyond both the upper and right face of cell 
1; consequently our search algorithm could take us first to cell 2 or to cell 5. In this case, since 
the dot-product is most positive for face shared with cell 5, it would be selected. It is easy to 
see that in either case, successive application would eventually lead us to cell 4. 

So far we have not considered the effects of model structure upon particle location. 
Consider the 2D example shown in Figure 5. This is identical to the first example except that 
cell 5 no longer exists, and cells 1 and 4 now each have faces that are not shared with other 
cells but are instead at a simulation boundary, typically a perfect conductor. A particle 

Figure 4. Simple 2D example of Figure 5. Simple example of particle 
unstructured grid particle location. location in the presence of model 

structure. 
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encountering such a face would need to be removed horn the simulation after allocating the 
current associated with its motion from its initial position to the point where its path intersects 
the boundary face. It should be noted that this same situation could exist in the example of 
Figure 4 if cell 5 were tagged with a special material attribute indicating it was a perfect 
conductor. If the dot-product algorithm is applied in this case, we would first attempt to cross 
the boundary face on the right side of cell 1. However, a critical question becomes whether or 
not the particle’s path actually intersects the face. If it does, we simply need to find the 
intersection point and remove the particle from the simulation. If, as shown in the example, it 
doesn’t intersect the face, we need to look for an alternate path from cell 1 (in this case 
through cells 2 and 3) to find the particle’s final location. An important issue is how to 
efficiently determine if a particle’s path intersects a cell face. The method we eventually 
settled upon first determines the intersection point between the path and the plane containing 
the face. Note that if the path in fact intersects the actual face, this location is needed anyway. 
We next determine whether or not this new point lies within the original cell using the dot- 
product algorithm, which for the reason described earlier, will determine that a particle 
located within numerical roundoff of one of a cell’s faces is within that cell. If the point is 
found to be within the cell, the path intersects the face — if not, we must look for an alternate 
path through another face of the original cell. 

We presently have an implementation of this algorithm that is being successfully used to 
locate particles on unstructured meshes. It is presently limited to meshes whose faces are 
planar. It should be noted that several mesh-related quantities are needed for the computations 
required: 

● a list of faces for each cell, 
● a list containing the neighboring cell, if it exists, for each face; otherwise an indication 

that the face is a boundary face, 
● a normal for each face and a means to determine whether it is inward or outward relative 

to the cells sharing the face, 
● a list of nodes and their locations for each face. 

The original VOLMAX field solver provided most of these quantities. The major exception was 
that there was no way to determine the orientation of a face’s normal relative to cells 
containing the face. To accommodate this new requirement, minor modifications were 
required in VOLMAX’S mesh database. Basically, the sign of the face number on the list of a 
cell’s faces is now used as a multiplier of the face normal to insure that it is outward directed. 

Weighting Factors for Particle/Mesh Interaction 

PIC codes require weighting factors to account for interaction between simulation 
particles and the simulation fields located on the finite-difference grid. These factors are used 
to interpolate field values from the grid to the particle’s spatial location, as well as to allocate 
the current and charge associated with a particle and its motion to the grid-based current and 
charge density fields. In typical PIC codes on rectilinear, structured grids, computing the 
weighting factors is straightforward; they are simply the product of linear weights in the three 
coordinate directions. For example, in lD, for a particle at Xp located between two @d points 
xl and X2, the linear weights are simply: 
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X2 – Xp Xp – xl 
WI = and W2 = —. 

X2–X1 X2 – xl 
(1) 

In three dimensions, there are eight weights associated with the eight nodes (corners) of the 
right-hexahedral cell, corresponding to the eight permutations of the product of the ID 
weights in the three coordinate directions. These weights have several important properties. 
First, their sum is always one. Second, as the particle approaches any one of the eight grid 
nodes, the weight associated with that node approaches one. As the particle approaches any 
face (or edge) of the cell, only weights associated with the nodes on that face (or edge) are 
non-zero. Ih a qualitative sense, there is a sensible correlation between the magnitude of a 
node’s weight and the proximity of that node to the particle. Finally, their computation is 
reasonably simple and efficient. 

On a fully general unstructured grid, the situation is much more complex. For the most 
general types of unstructured-grid cells, developing a weighting scheme that possesses the 
attributes described above is quite difficult, and any implementation would be extremely 
computationally intensive. However, if we restrict ourselves to a limited subset of cell types, 
the task is much more tractable. We have chosen to implement weighting schemes for three 
basic cell types: conformal linear right hexahedra, extruded linear triangular prisms (wedges), 
and linear tetrahedral. This subset still allows efficient modeling of very complex geometric 
structures and has the benefit that the faces of these cell types are planar. It should be noted, 
however, that VOLMAX’S dual grid, which is generated automatically as a result of topology of 
the primary grid, will in almost all cases be composed of a bewildering array of cell-types, 
most of which are not among the three types to which we have limited ourselves. 
Consequently, we have restricted ourselves to weighting to and from primary nodes. Thus, any 
field quantities that are involved in such weighting need to be mapped to primary nodes. This 
means that current density and charge will be located at primary nodes. In addition, magnetic 
fields are located at the dual nodes in VOLMAX’S field solver. Since we need to interpolate 
magnetic field to a particle’s spatial location in order to calculate the forces on that particle, 
we will need to first obtain an “average” magnetic field from the dual node values at the 
primary nodes. 

Before describing the weighting algorithm for each of these three cell types, it is usefid 
to discuss some issues that pertain to weight computations in general. For the computation of 
weighting factors as well as for their subsequent application, it is important that the nodes 
associated with a cell are known, and even more, that each node’s relationship to the cell is 
known. Unfortunately, since this is irrelevant to the EM field solution, the original version of 
VOLMAX did not directly store this information. Instead, it maintained multiple lists relating 
cells to faces, faces to edges, and edges to nodes as described earlier. Unfortunately, traversing 
each list in succession generally finds every edge twice and finds every node a multiple, 
indeterminate number of times. In addition, there is no topological information that relates the 
nodes to the original cell. Since all this information is typically required for every simulation 
particle one to two times per simulation timestep, the computational cost is staggering and it is 
quickly apparent that an addition was required to the VOLMAX mesh database. This addition 
was simply a new list that provided the nodes associated with a cell for each primary cell in 
the simulation. This list is constructed by traversing the multiple lists as described above and 
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removing the multiple node instances. At the same time, the nodes are ordered by conventions 
distinct to each cell type, so that their topological relationship to the cell can be inferred. In 
addition, a CellInfo array was added that contains tags that indicate various properties of each 
cell. A “cell-type” tag was then associated with each cell so the weighting (and location) 
algorithms can easily utilize cell-type-specific methods. It should be noted that the code 
required to construct this list is extremely complex and requires significant computation. 
Without constructing this cell-to-node mapping a priori, the cost of determining it every time 
a particle is processed would be prohibitive. 

Weighting for Con formal Linear Right Hexahedra 

Conforrnal right hexahedra are exactly the cell type used in a standard rectilinear grid 
PIC code. These cells are needed for two reasons: first, the “wrapper” cells that connect the 
structured and unstructured regions of the grid (cf. Figure 2) are by necessity of this type, and 
second, it is useful for the purposes of testing and validation to construct an unstructured 
equivalent of a structured rectilinear grid. Since this is just a standard rectilinear cell we can 
use the linear weighting scheme described in (1), the only complication being that we need to 
know the location of the upper and lower comers (XU and xl) of the cell. This is accomplished 
be ordering the eight nodes based upon their relative position in the three coordinate 
directions, i.e., (xl, yl, Zl), (xU, y~, ZJ (xl, YU, zJ, . . . . (XU, YU, ZU). Consequently, the coordinate 
limits of the cell are defined by the spatial locations of its first and eighth nodes. 

Weighting for Extruded Linear Triangular Prisms 

Extruded triangular prisms, or wedges, are useful for modeling complex structures that 
have translational or rotational symmetry. Weights for these cells are constructed as a product 
of two weights, a 1 D weight in the direction of the extrusion and a 2D transverse weight over 
the triangular cross-section of the prism. The lD weight is again the simple linear weight 
described in(1), the complication being that we need to know the coordinate direction (x, y, or 
z) of the extrusion and the spatial range of the cell in that coordinate. Presently, the extrusion 
orientation is contained in the cell’s “cell-type” tag, i.e., there are three prism types: X-prisms, 
Y-prisms, and Z-prisms. However, it would be relatively easy to extend this to support more 
general non-conformal extrusion orientations. The range of the cell in the extrusion coordinate 
is determined implicitly by the cell ordering — the first three nodes are located at the “low” 
end of the extrusion, the remaining three nodes at the “high” end. In addition, the nodes at 
both ends of the extrusion are arranged in the same order relative to the 2D triangular cross- 
section. 

Computation of the transverse weighting is based upon an area-weighting concept 
similar to that which can be used to describe the standard rectilinear method. Figure 6 shows a 
particle’s location (xP) in the transverse cross-section of the prism. Three sub-triangles are 
constructed by connecting the particle location to each of the three nodes. The weight of each 
node is then taken to be the ratio of the area of the sub-triangle opposite that node to the area 
of the entire triangle. For example, in Figure 6, the transverse weight associated with nodes 1, 
2, and 3 would be A ~/A, A2/A, and A3/A, respectively, where Al, A2, and A3 me the mess 
of the three sub-triangles and A is the area of the entire triangle. Note that these would also be 
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the transverse weights of nodes 4,5, and 6 (the nodes extruded from 1,2, and 3), respectively. 
Also note that these weights possess all the characteristics previously described. 

To compute the areas of the sub- N2 
triangles, we can use the face dot-products 
computed previously (cf. Figure 3) in the 
process of particle location. The height of f~ 
the particle above the primary edge that 
forms the base of a sub-triangle is the 
negative of the dot-product for the face 
extruded from that edge. With this height, 
the sub-triangle’s area is easily computed, 

f~ 
e.g., 

Al = 
1 ‘F Figure 6. Transverse cross-section of an - 

‘j#iF . Vp) , extruded triangular prism showing the 
transverse weighting scheme. 

where L is the extrusion length, AF is the 
area of the extruded face opposite-node 1, 
and the dot-product is the face dot product for that same face. Since A can be expressed as the 
ratio of the cell volume to the extrusion length L, the transverse weighting factor becomes 

w 
1 AF 

trans = -#iF . VP)> 
c 

where Vc is the volume of the extruded cell. VOLMAX already stores both the area of all faces 
and the volume of all cells. Also note that we have assumed an implicit relationship between 
nodes and the extruded faces. This is in fact accomplished by reordering the list of faces for 
each cell of this type so that the three extruded faces are first ordered to correspond with the 
order of the nodes opposite those faces on the list of nodes for the cell. The remaining lower 
and upper triangular faces are ordered as faces 4 and 5, respectively. 

Weighting for Linear Tetrahedral 

Tetrahedral cells are the most 
common type of non-orthogonal cell used 
in VOLMAX and provide the most 
modeling flexibility. The weighting 
scheme employed for tetrahedral is the 3D 
extension of the method used for the 
transverse weighting in wedge cells 
described in the last section. In this case, 
sub-triangles become sub-tetrahedra and 
the weights become the ratios of the 
volumes of these sub-tetrahedra to the 
volume of the entire tetrahedral cell. 
Figure 7 shows a particle’s location (xP) in 
a tetrahedral cell. Al is the area of face 1. 
The four nodes associated with the cell 

N2 

Figure 7. Depiction of the weighting 
algorithm for a linear tetrahedron. 
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have been ordered so that each node is opposite to the corresponding face on the list of faces 
for the cell. A sub-tetrahedra (whose base is opposite node 1) and its height h are also shown. 
Note that all the criteria for weight factors are satisfied by this scheme. As in the case of the 
wedge cell, we can make use of previously computed face dot-products to compute the 
weights. Knowing that the volume of a tetrahedron is one-third the product of the area of its 
base and its height, we obtain: 

where Vc is the volume of the tetrahedral cell, AF is the area of the face opposite node 1, and 
the dot-product term is the face dot-product for that same face. 

Current and Charge Allocation 

After the particles in a PIC simulation have been advanced in time, their motion, which 
reflects a current, needs to be apportioned to the simulation grid. This provides the means by 
which the EM fields are affected by the motion of the free charge in the system. The choice of 
algorithm for this allocation is always a trade-off between the factors of accuracy, numerical 
discretization noise, and computational efficiency. For example, in a standard rectilinear PIC 
code, an algorithm might be efficient and conserve charge but introduces unwanted numerical 
noise. On the other hand, a different approach may be relatively noise-free, but introduces 
significant errors in charge conservation. In general, both of these problems are increasingly 
mitigated as the computational complexity and load of the allocation scheme are increased. 
For example, the QUICKSILWR allocation scheme opts to conserve charge and be reasonably 
efficient at the cost of significant numerical noise. This undesirable result is then mitigated 
through modifications to the EM field algorithm that provide low-pass filtering to reduce the 
noise. 

Although charge conservation is certainly desirable, implementing a charge-conserving 
allocation algorithm on a general unstructured grid is significantly more complicated and 
expensive; consequently, we have decided to use a less expensive, less-noisy algorithm. This 
pushes the issue of charge conservation to another part of the code. A detailed discussion of 
this issue is deferred to the next section of the report. 

As described in the previous section, other choices have restricted us to allocate both 
current and charge to primary nodes. However, we still have some freedom on exactly how 
this is done. For example, consider the case of a particle moving through the unstructured grid 
shown in Figure 4. Allocation of charge is reasonably straightforward since charge and 
particle position are co-located in time. The obvious choice (and that made for most rectilinear 
algorithms, including QUICKSILVER) is to allocate the entire charge of a particle to the cell 
associated with its final position, using the nodal weights appropriate for that cell’s type. In 
the example of Figure 4, this means the charge would be entirely allocated to the nodes of cell 
4. Allocation of current is more difficult. In our example, the particle moves through cells 1,2, 
3, and 4. Since current is located in time one-half timestep away from particle position, one 
possibility (used in many rectilinear codes) would be to allocate current to the cell that 
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contains the midpoint of the path between the particle’s initial and final positions. Note that 
this in general requires the computation on an additional set of weighting coefficients for this 
intermediate cell, and also requires that the particle location algorithm be used to find two, 
rather than one, particle positions for each particle at each timestep. An even more expensive 
but probably less noisy method would be to divide the particle’s path into subpaths that are 
each confined to only one cell and then allocate some fraction of the particle’s motion to each 
path. In our example, current would be allocated separately to all the nodes in cells 1-4. This 
is clearly much more expensive since you would now need to find the intersection of a 
particle’s path with every face it crossed rather than only boundary faces. In addition, 
weighting factors would need to be computed for every cell along the path. Any sensible 
means of apportioning the current to each cell would probably require computation of each of 
the subpath lengths as well. 

Because particles are constrained by the field solver’s Courant limit to move at most 
some fraction of the average edge length, multiple face crossings, as in the case of our 
example, are limited to situations where the particle’s path cuts through corners of cells very 
near a vertex that is shared by the initial and final cells. This means that contributions to nodes 
of cells other than the initial and final cells would be small by the very nature of the weight 
factors. Consequently, we have chosen to initially implement yet another variation, i.e., we 
will allocate one-half of the particle’s current in the initial cell and one-half in the final cell. In 
our example, we would allocate to the nodes of cells 1 and 4. Note that this does not require 
any additional location or weight computation. Also note that in the case that a particle does 
not actually leave its starting cell, all these schemes are equivalent. In the case that its path 
falls in only two adjacent cells, it is less noisy (has a larger stencil) than the midpoint method, 
and is the same as the subpath method except for the relative apportionment of current to the 
two cells. In the case that more than two cells are traversed, the subpath method is probably 
the least noisy. 

Next a brief discussion of the mechanics of allocation is in order. As particles 
move through the grid, their charge is accumulated to the appropriate primary nodes 
according to the weighting factors. After all particles have been advanced for a given timestepj 
the charge accumulated at each primary node represents the total charge at that node, or 
alternately, the total charge within the dual cell containing the primary node, and is given by 

P 

where qp is each particle’s charge and ~N~ is the weighting factor for node N and particle P. 
In contrast to the structured-grid algorithm, we choose to save the charge, rather than the 
charge density, at each node. However, to get the charge density at the node, we simply divide 
the allocated charge by the volume (I’D) of the dual cell corresponding to the node. 

Current density is somewhat more complicated. Since the current density is simply the 
product of the charge density and the particle velocity, we can express the current density 
associated with a single particle as 

J = Pv = [qP/v] [(xf-xi)/Ad> 

where xi and xf are its initial and final position, At is the timestep, and V is the volume 
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occupied by the particle. Consequently, as the particles are advanced, we accumulate at each 
node N to which the particle contributes the vector quantity 

‘N = ~q~w~,~(xf-xi) . 
P 

After all particles have been advanced for a given timestep, we then convert T at each node to 
current density as follows: 

JN = T~/(2v~At) , (2) 

where VD is the volume of the dual cell containing node N and the factor of two accounts for 
the fact that we have allocated one-half of each particle’s motion to the nodes of both its initial 
and final cells. 

One complication that is introduced is that although it is necessary to know J at the 
boundary nodes of the grid, there is not strictly a dual cell associated with such nodes, nor 
consequently a dual cell volume. It is useful to consider a 2D example of this situation before 
dealing with the 3D problem. Figure 8 shows a 2D grid in the vicinity of a primary node NP 

Figure 8. 2D example of a “pafiial” dual cell at the simulation boundary. 

residing on the boundary of the grid. As in Figure 2, primary edges and nodes are depicted as 
solid lines and filled circles, respectively. Similarly, dual edges and nodes are shown as dashed 
lines and open circles. As seen in Figure 8a, there is no complete dual cell associated with the 
boundary node Np because the node is not completely enclosed by dual edges. However, we 
can construct new “partial” dual edges by connecting the “hanging” dual nodes to the 
boundary edges (see Figure 8b). We can then construct a “partial” dual cell (shown as the 
shaded region in Figure 8b) whose boundary is defined by the original dual edges, the 
constructed “partial” edges, and the primary edge boundaries. 

The procedure for defining a “partial” dual cell in 3D is analogous but more complex. In 
this case, a given primary node Np on the boundary has an incomplete set of dual faces (one 
associated with each of the primary edges connected to NP not in the boundary). If we can 
augment that set with constructed “partial” dual faces, we can close the volume to the grid 
boundary, defining a “partial” dual cell whose properties, including the volume, can be 
determined. It turns out that there will be a new “partial” dual face associated with each of the 
primary edges comected to /’Jp that lies in the grid boundary. The path defining this face is 
chosen to start at the midpoint of this boundary primary edge, connecting to the barycenter of 
one of the two primary boundary faces that share that primary edge. (The barycenter of a cell 
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or face is defined to be the mean of the positions of all the nodes that define that cell or face). 
From there, the path goes to the dual node that is the barycenter of the primary cell bounded 
by the primary boundary face. From this poin~ a path of zero or more existing dual edges 
eventually takes us to a dual node that is the barycenter of the primary cell that is bounded by 
the other boundary face that shares the original primary edge. The path is then completed by 
continuing to the barycenter of this other face and back to the starting point at the midpoint of 
the primary boundary edge. One can visualize this construction by ex amining Figure 8b, but 
interpreting IVp to be the midpoint of the boundary primary edge and the solid (dashed) lines 
to be cross-sections of primary (dual) faces. Note that the constructed face will not in general 
be planar, and the figure represents a projection of the actual face. 

Incorporation of Current Density into the VOLMAX Field Solver 

Current density due to the motion of free charge contributes to Ampere’s Law. In 
VOLMAX, Ampere’s Law is used to update the normal component of the electric field for each 
dual face. If the current density is included, the update equation becomes 

J & E“dA= (3) ~cH”dl-j~J”dA, 
at s 

where S is the surface of the dual face, and C is the closed contour around the face. Since we 
know the vector current density (J) at primary nodes, we will approximate its value over a 
dual face by the mean of its value at the two nodes of the primary edge associated with the 
dual face, i.e., 

J 
J1 + J2 

[ 1 J.dA z ~ ‘fip AF, 
s 

(4) 

where ii~ is the dual face normal, J1 and J2 are the vector current density at the two primary 
nodes, and AF is the area of the dual face. 

VOLMAX also updates the vector electric field at the primary nodes using the volume 
integral form of Ampere’s Law, in which case the current density contribution must be taken 
into account. That update equation then becomes 

ei&Edv = $sdA X H - jvJdv , (5) 

where V is the volume of a dual cell and S is the closed surface of that cell (the combined 
surfaces of all the cell’s faces). Since we know current density at the primary nodes from (2), 
we simply approximate the J integral term by the product of J with the dual cell’s volume. 

Charge Conservation 

One of the traditional difficulties associated with PIC simulation is charge conservation. 
This difficulty arises because the EM field algorithm advances the electric and magnetic fields 
by integrating Ampere’s Law and Faraday’s Law (the two Maxwell “curl” equations). Gauss’ 
Law (V . D = p ) is satisfied implicitly if there is no free charge in the system. However, 
when there is free charge, Gauss’ Law is satisfied only if the continuity equation 
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( ) is satisfied. Unfortunately, simple choices of particle current density 
allocation schemes and their associated weight factors do not in general satisfy the continuity 
equation and a spurious electrostatic field associated with this error in charge conservation 
results. If of a sufficiently large magnitude, this error can have an unacceptable affect upon the 
fidelity of the simulation. 

Several approaches 21’22 have been taken to correct this problem; we have chosen to 
implement the technique22 proposed by Marder, which he refers to as the “pseudo-current” 
method, but has become commonly known as the “Marder” correction. In this method, a new 
field is defined, 

F(x> t) =V. D-p (6) 
which represents the error in charge conservation. Ampere’s Law is then modified by adding a 
multiple of the gradient of F to the right-hand side: 

aE/dt = c2Vx B–J/c+dVF, 
where d is a numerical constant. The added term is referred to as a “pseudo-cunent” (actually 
& times the “pseudo-current”) since it appears in the equation in a current-like fashion. It can 
be shown22 that F satisfies an inhomogeneous diffusion equation 

i3F/Elt -dN2F = -(aP/at + V . J) . 
Note that if F is set to zero on the boundaries, the code will dtiuse the errors to the boundary. 
The constant d controls the diffusion ra)e its maximum value is limited numerically by the 
Courant stability constraint 2de At/Ax < 1 , where b is the lD-equivalent cell size. For 
the unstructured grid, we typically choose At to be the length of the shortest primary edge. 

The implementation of the Marder correction is straightforward on a rectilinear grid. 
Since electric field components are located spatially along the orthogonal cell edges, the 
divergence is naturally centered at the cell nodes, which is also were the charge density is 
located; consequently, F is naturally located at the cell nodes. Gradients of values located at 
cell nodes are naturally centered on the cell edge connecting two nodes. This is precisely the 
location of the current density; consequently, the “pseudo-cument” (de VF ) can be easily 
combined with the actual particle current in Ampere’s Law. 

On an unstructured VOLMAX grid, computation of F is also straightforward. If we 
consider the volume integral of F over the dual cell that contains a given primary node, 

~ 
Fdv = ~vV” Ddv-jvpdv = e“$~E”dA-Qc, 

v 
(7) 

where Qc is the total charge in the dual cell, S is the surface enclosing the dual cell (the union 
of all the dual cell’s faces), dA is a vector differential area element of S in the outward normal 
direction, and we have made use of the divergence theorem to obtain the surface integral term. 
If we now divide by the volume of the dual cell, we obtain an average value for F at the 
primary node. VOLMAX already computes the electric field component normal to all dual 
faces, which together with the dual face areas, allow computation of the surface integral in (7). 
Since the weighting factors described in previous sections relate particles to primary nodes, 
we will in fact accumulate total charge at the primary nodes, which can be interpreted as the 
total charge in the dual cell containing the primary node. 
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The computation of the gradient of F is less straightforward. The VOLMAX algorithm for 
advancing Ampere’s Law (3) requires the component of current density normal to each dual 
face. Consequently, we need to be able to compute VF. fi~ on the dual face, where ii~ is the 
dual face normal. Since F is located at primary nodes, it is natural to compute the component 
of the gradient along primary edges (VF” fi~, where fi~ is a unit vector from node 1 to node 
2 along the primary edge). In the rectilinear case, this unit vector is aligned with the associated 
dual face normal, which is why the gradient of F’ is aligned with the current density and is 
straightfonm.rd to compute. In contrast, on an unstructured grid, fi~ and i.i~ are in general not 
aligned, and consequently there are several different approaches to compute VF” fi~. AU 
involve determining g a vector approximation for VF at the primary nodes. There are two 
different approaches that can be used. First, one can divide its integral over the volume of the 
associated dual cell by the dual cell’s volume. This integral can be converted to a surface 
integral using the gradient form of the divergence theorem, giving 

VF s [fv VFdV]/VD = [f~~dA]/VD , (8) 

where VD is the volume of the dual cell and F is the approximate value of F at each dual face, 
which we take to be the mean of the values of F at the two nodes of the primary edge 
associated with the dual face. 

A second approach to approximating VF at the primary nodes starts by computing 
VF . fig for all primary edges: 

GE s VF. iiES(F2-F1)/LE , (9) 

where F1 and F2 are the values of F at the nodes 1 and 2 of the primary edge, respectively, and 
LE is the length of the primary edge. Then for a given primary node, VF is approximated by a 
least-squares fit to the GE for all primary edges containing the given primary node. VOLMAX 
presently uses this same technique to approximate the vector electric field at primary nodes 
from normal components of the electric field on the associated dual faces. 

Once the primary node vector gradients have been obtained using one of the two 
methods just described. there are two different approaches to finding the normal component 
on the dual faces. The first simply approximates the value at the face by the mean of the values 
at the two nodes of the primary edgg associated with the dual face and then takes the dot- 
product with the face normal, i.e., VF . fi~, where 

(lo) 

and VF ~ and VF2 are the values of VF at the two nodes of the primary edge. The second 
method is based on the premise that the edge components of the gradient are more accurate 
than the vector approximations at the primary nodes and that the dual face normal is 
predominantly in the direction of the associated primary edge. If we decompose the gradient 
into two components, one parallel to and one perpendicular to the primary edge, and use the 
vector gradient only to determine the perpendicuku componen~ we obtain the following 
approximation for the face-normal component of the “pseudo-current”: 

VF . fi~ s {[ V-F – (V-F . ti~)ii~] + G@~} . fi~ . (11) 
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There are two primary means of introducing particles into a PIC simulation: via beam 
emission and via space-charge-limited (SCL) field emission. In either case, particles are 
introduced from a conducting surface. Clearly, introducing charge anywhere else in the space 
will violate charge continuity since we would in essence be creating charge out of “thin air”. 
For beam emission, the particles are injected into the simulation with prescribed density and 
velocity distribution. Consequently, the injection of beam particles is straightforward; at an 
appropriate rate, we introduce particles at the emission surface, with the correct velocities and 
with sufficient charge, to produce the prescribed density and velocity distribution. 

In contrast, the density and velocity of particles introduced due to SCL emission are not 
prescribed but is instead determined by the electric fields local to the site of emission. 
Specifically, an SCL emission surface is assumed to be an unlimited source of free charge and 
the current extracted from such a surface is limited only by space charge — eventually the 
electric field that provides the accelerating force for particles leaving the surface is driven to 
zero by the electrostatic field of the emitted particles’ own charge. Consequently, an algorithm 
for SCL attempts to introduce just enough charge at the emission surface so that the electric 
field normal to the conducting surface will vanish. 

A typical approach to accomplish this is to apply Gauss’ Law over the volume of the 
“partial” dual cell associated with a boundary primary node on an SCL emission surface, i.e., 

QN = &jvV” Edv = &j~E.dA, (12) 

where QN is the charge at primary node iVR V is the 
volume of the “partial” dual cell, and S is its enclosing 
surface. Remember that the charge accumulated at the 
primary node NP represents the total charge in the partial 
dual cell. The geometry associated with (12) is shown 
schematically in Figure 9, which shows an emission site at 
a primary node Np as well as the dual faces and their 
corresponding face-normal electric fields. In addition to 
the “full” dual faces, the enclosing surface includes the 
partial dual faces as well as the portion of the boundary 
primary faces intercepted by the partial faces. For SCL, Figure 9. Illustration of use of 

the normal component of electric field at the boundary 
Gauss’ Law for SCL emission 
algoriihm. 

vanishes and hence the contributions from the boundary 
primary faces to the surface integral in (12) is zero. To first order, the integrals over the partial 
dual faces also vanish since the total electric along the boundary primary edges that pierce the 
partial faces is zero. Using this information, assuming that the normal component of the 
electric field is constant over a dual face, and splitting QN into two potions (Qadd and Qinir), 
(12) becomes 

(13) 

where the sum is over all the dual faces, (E . iiF) is the known face-normal electric field, A~ 
is the area a dual face, Qinir is the charge already in the dual cell before emission, and Qad~ is 
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the amount of charge that needs to be added to the dual cell to force the surface electric field to 
vanish (SCL). TWically, the emission from an SCL surface is only one species, or at least 
multiple species of the same polarity (e.g., only electrons or only positive ions). Consequently, 
if the sign of Qadd is the same as that of the emission species, Qadd is the amount of charge to 
be emitted by the algorithm. If on the other hand, the signs are opposite, there is already too 
much charge in the cell and no particles will be emitted. 

Particle Data Management 

In the QUICKSILVER code, for reasons of efficiency, particles are not handled 
individually, but in groups of many particles. In addition, only a few pieces of information 
about a single particle need to be persistent (i.e., saved from one tirnestep to the next); 
however, much more information is required per particle while they are being processed to 
determine their motion and allocate that back to the grid. For this reason, particles are in fact 
arranged in a hierarchical fashion. First particles are grouped into vectors; a vector contains 
the maximum number of particles that will be processed at any given time. The size of a 
vector is determined by the opposing constraints of having a large vector for efficiency, but a 
small vector to reduce memory usage required for each particle while they are being 
processed. These particle vectors are then grouped into caches, which contain only persistent, 
timestep-to-timestep particle data. QUICKSILVER provides extensive methods for efficiently 
managing particles in this data structure, and it was decided to utilize that structure as much a 
possible to handle particles moving on the unstructured grid. 

First consider the persistent information required to describe the state of a particle — 
charge, species, spatial position, and momentum. For convenience, we also carry a random 
number, generated at a particle’s time of creation, for each particle. This is useful for several 
models and diagnostics. Finally, we must save enough information to locate the particle 
relative to the grid through which it is moving. For a structured muki-block QUICKSILVER grid, 
this requires four integers, three coordinate indices and a block number, which are typically 
packed into a single integer. For an unstructured grid, only a single integer, the primary cell 
containing the particle, is required. Note that this last item is the only difference between the 
requirements for the two grid types and it is consequently straightforward to use a standard 
QUICKSILVER cache for particles in the unstructured grid — we simply interpret one member 
of the cache data structure in a different way. We need to add a new list containing all the 
caches currently in use for unstructured-grid particles, which is analogous to the one already 
used for caches for structured-grid particles. 

Armed with the cache structure, we can now outline the procedure for combining all the 
particle-handling components described in this section in order to process particles on the 
unstructured grid. For each cache of particles on the unstructured grid’s cache l.isc 

1. We extract the persistent data of particles from the cache one vector at a time. 
2. The particles in the vector are then processed. This involves: 

a. Advancing their momentum and position in time, 
b. Allocating current density and charge to the grid, 
c. Checking if the particle has crossed a boundary requiring some further pro- 
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cessing (e.g., removal from system), 
d. Extracting any requested diagnostic information. 

3. The persistent data of any of the vector’s particles that remain, after advancement, 
on the unstructured grid are stored into a cache of already-processed particles for 
storage until the next timestep. 

4. Any particles newly created in the unstructured grid this timestep must be placed 
in the cache of already-processed particles. 

Note that the management approach outlined so far does not account for treatment of 
particles that, during their processing during a single timestep, move from the unstructured 
grid to the structured grid, or vice versa. Discussion of the management of such particles will 
be deferred until a later section that describes particle handling through the interface region in 
detail. 
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Time Synchronization of Structured-Grid/Unstructured-Grid 
Solution with Particles 

In order to understand the relationship and interaction between the solutions on the two 
grid types, it is useful to understand the flow in time of the algorithm that updates the fields 
and particles. First, the algorithm used by QUICKSILVER will be described to show the 
interaction between fields and particles. Next, the flow of the VOLMAX algorithm will be 
shown to provide an understanding of the way the solutions in the structured and unstructured 
grids are combined. Finally, we will describe the algorithm that results as a combination of the 
two capabilities. A detailed discussion of grid interface issues is deferred to the next section. 

In the following descriptions, we will use superscripts to indicate the temporal location 
of a given value. For example, Ek represents the electric field at the kth timestep (t= kit). 
Similarly, Hk+1J2 represents the magnetic field at t = (k+ l/2)At. The algorithms are “leap- 
frogged” in time, i.e., various state variables are located at different times, separated by one- 
half the timestep, in order to center the numerical approximation to the time derivatives. 
Variables can be thought of as full-step or half-step values (e.g., Ek and Hk+l’2, respectively) 
based upon their temporal location. 

Original QUICKSILVER Algorithm 

The original QUICKSILVER algorithm assumes that at the beginning of the (k+l)th 
timestep [the timestep that advances the simulation from kAt to (k+l)At], the following state 

k k+l/2 k k k-1/2 
variables of the system are known: E ,H ,p ,x ,p , where E and H are the electric 
and magnetic fields, p and J are the charge and current densities due to particle motion, and x 
and p are the position and momentum of each particle. qp is used to denote the charge of a 
single PIC particle. The algorithm proceeds as follows: 

1. Create new particles (pk + Xk,pk - 1’2,qp) 

2. Advance all particles 

a. Advance particle momenta (P ‘- l’2,E~,Hk+ 1’2 + pk + 1’2) 

b. Advance particle position 
k+l k+ l/2 k+l 

(Xk,pk+ 1’2 + p J ,x ) 

3. Advance the electric field (Ek,Hk+ l’2,Jk+l’2 + Ek+l ) 

4. Advance the magnetic field k+ l/2 k+l 
(H ,E + Hk+3’2). 

Note that in this simple flow description some steps have been omitted, for example, the 
required normalization of the current and charge densities as well as the application of 
boundary conditions to the electric and magnetic fields. Also note that QUICKSILVER actually 
advances the magnetic flux (B) rather than the magnetic field intensity (H). The flux and field 
intensity are related by the permeability of the medium (v), i.e., B = LH. Finally, since 
QUICKSILmR’S current density allocation scheme conserves charge exactly, it does not include 
a Marder correction. However, if it did, we would need to add a new step after step 3 that 

. 
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~+1 from E~+l and pk+l, computes F and step 3 would need to include a “pseudo-current” 
computed from the gradient of F to advance the electic field. 

Original VOLMAX Algorithm 

The VOLMAX algorithm does not have the complication of particles and their associated 
space charge, but it does have complications due to performing field advancement on two 
separate grids, each with its own timestep. At the be innin of the (k+l )th timestep, the 

% k+%2,E:,H:/2, where we have 
following state variables of the system are known: E ,H 
added the notation that variables with subscripts are unstructured-grid variables. The subscript 
denotes aft~r which sub-step of the unstructured-grid solution the variable refers. For 
example, ~j refers to the value of the variable ~ at t = (k + ~/Nu)At, where Nu is the 
number of sub-timesteps used by the unstructured-grid solve; in a singl~ +Wtep of the 
structured-grid solver. Note that this definition implies that <Nu + ~ = ~j . The VOLMAX 
algorithm proceeds as follows: 

1. Advance electric field on structured grid (E~,H~+ 1’2 + E~+ 1 ) 
2. Advance unstructured-grid fields over NU sub-timesteps 

Loop over j from 1 to Nu 

(Ef.l>H~_l/z + E;) a. Advance unstructured-grid electric field 

b. Advance unstructured-grid magnetic field (H~-1/2>Ej ~+ H~+l/2) 
k+l k+l state at end-of-loop: E&U,H~U, 1/2 ~ E. ,H1Z2 

3. Advance magnetic field on structured grid 
k+ l/2 k+l 

(H ,E + Hk+3’2). 

Figure 10 shows a timeline over one timestep for the special case that NU equals two. 
The field quantities referred to in the above algorithm ye sh~wn in ~+~ proper location along 
the timeline. From this diagram it is easy to see that E2s E~U = E. 

For this case. a bncf word about boundary conditions is in order. After step 2a above, the 
electric fields on primary edges lying in the wrapper outer boundary are not correct, but need 
to be in order to proceed to step 2b. These values need to be supplied by the structured-grid 
solution at the same spatial locations. Note, however, that the temporal location of the two 
solutions does not match — the latest structured-grid values are ahead (in time) of the 

Structured: Ek Hk Ek+l 

Unstructured: E: 

-----~ 

I kAt (k+l/2)At (k+l)At 

Figure 10. Time line diagram showing the temporal location of the field 
quantities for both the structured and unstructured grids (Nu = 2). 
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unstructured-grid solutions until the last sub-timestep. Consequently, the proper time location 
is obtained by interpolation from the latest structured-grid values as well as values from 
previous timesteps. For example, if we use linear interpolation, we obtain 

E;= COEk+CIEk+l, CO =1–5, CI =5, 5=j/Nu , (14) 

where E is an edge component of the electric field in the wrapper outer boundary. Note that 
for purely EM applications, VOLMAX is typically used with quadratic interpolation, i.e., 

E; s C_lEk-l 
k+l 

+ COEk+CIE , (15) 

where 

c_~ =;5(5 -1), co= 1-52, c1 =;5(8 +1). 

Similarly, after step 1 above, the electric fields on primary edges lying in the wrapper inner 
boundary are not correct, but need to be in order to proceed to step 3. However, at the end of 
step 2, we know the values of the field at these same spatial locations and at the same time. 
Consequently, at the end of step 2, these values are supplied to the structured grid directly 
from the corresponding values in the unstructured grid. 

It should be noted that when NU is one, the time advancement algorithms on both grids 
are completely aligned and the need for interpolation is gone. Indeed, in this case both (14) 
and (15) degenerate to the latest structured-grid electric field edge component, Ek+l. Also note 
that in this case, all electric fields are advanced (steps 1 and 2a), then all magnetic fields are 
advanced (steps 2b and 3). 

The Combined QUICKSILVER-VOLMAX Algorithm 

The combined QUICKSILVER-VOLMAX algorithm assumes that at the beginning of the 
(k+l)th timestep, the following structured-grid state variables of the system are known: 

k k+ l/2 k k k-1/2 
E ,H ,p ,x ,p . 

In addition, the following unstructured-grid state variables are also assumed to be known: 

E;,H;,2,Q&F& x;,p:1,2 , 

where Q is the total charge accumulated at a primary node and F is the measure of charge 
conservation [cf. (6)] at a primary node. The algorithm proceeds as follows: 

1. Create new particles on structured grid (pk + xk,pk-1’2,qp) 

2. Advance particles on structured grid 

a. Advance particle momenta (P ‘- 1’2,E~,Hk+ 1’2 + p~+ 1’2) 

b. Advance particle position k+l k+l/2,xk+l 
(Xk,pk+ 1’2 + p J ) 

3. Advance the electric field on structured grid (Ek,Hk+ l’2,Jk+ 1’2 + Ek+ 1 ) 
4. Advance unstructured grid fields over Nu sub-timesteps 

Loop over j from 1 to Nu 

30 



a. Create new particles on unstructured grid (Q~_l + X~_1,P~_31Z,qP) 

b. Introduce any particles that have come from the structured grid (at step 2 
above) for sub-timestep j 

c. Advance particles on unstructured grid 

momenta (P;_3/2>E;_ l>Ii:_l/2 + P;_l/2) 

position 

cl. Advance unstructured-grid electric field (E$_ 1,H~_ 1121~_ 1 ~~. l/z + E$ ) 

e. Compute F“ 

f. Advance unstructured-grid magnetic field 

5. Advance magnetic field on structured grid 
k+ l/2 k+l 

(H ,E + Hk+3’2). 

As in the original VOLMAX algorithm, after step 4d above, the electric fields on primary 
edges lying in the wrapper outer boundary are not correct, but need to be in order to proceed to 
step 4e. However, if these field are corrected using just the original method outlined in the 
previous section, there will be a slight error. This is because the computation of the structured- 
grid electric field on the wrapper outer boundary in step 3 is in error to the extent that it did not 
include the effects of particles moving over that timestep on the unstructured grid in the 
wrapper cell layer. These effects are not even known until step 4c is completed for the last 
sub-timestep. To correct the error, we must accumulate a correction term due to this current 
over all the sub-timesteps, and add it to the time-interpolated value from the structured grid. 
Note that because of the aforementioned error in the structured-grid electric field on the 
wrapper outer boundary (and all the edges connecting the wrapper inner and outer 
boundaries), when we supply field values from the unstructured grid to the structured grid for 
the wrapper inner boundary at the end of step 4, we must also supply the corrected values for 
these additional structured-grid electric fields. 

Charge will be accumulated at the nodes on both the wrapper inner and outer boundaries 
on both grids in steps 2 and 4c. Consequently, charge on both grids at these nodes must be 
combined before any calculation requiring charge, on either grid, is performed. For example, 
to compute F on the unstructured grid for any of these nodes requires that the charge that was 
accumulated on the corresponding structured-grid nodes be included. Since the charge is co- 
located in time with the electric field, its structured-~d value similarly needs to be time- 
interpolated to the current unstructured-grid time value [cf. (14) or (15)]. Also, after 
completion of step 4e, the values of F on the outer wrapper are not correct since not all of the 
electric field values required for their computation are within the domain of the unstructured 
grid. They will be needed to compute the “pseudo-current” term on the next timestep. 
Consequently, F for these boundary nodes will need to be computed on the corresponding 
nodes and subsequently supplied to the unstructured grid. 
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Structured-Grid/Unstructured-Grid Mesh Interface Issues 

The hybrid grid algorithm embodied in VOLMAX basically integrates Maxwell’s 
equations over one timestep independently in both the structured and unstructured regions of 
the simulation domain. As described in the introduction, these two independent solutions are 
then coupled at the boundary that separates the two grids. The coupling is accomplished by 
allowing a one-cell thick overlap, the wrapper layer (see Figure 2), between the two grid 
regions; field values one cell inside the structured grid provide the boundary condition for the 
unstructured-grid solution and conversely field values one cell inside the unstructured grid 
provide the boundary condition for the structured-grid solution. 

When free charge is added (i.e., PIC is used) the situation becomes more complicated. 
However, the view that the solution in each grid region is driven at the boundary by the other 
grid’s solution is still basically valid. The complications arise from the need to pass more field 
information back and forth between the two grids (H, J, p, F) and that J and p values of the 
two solutions in the shared wrapper layer must be combined to account for the fact that 
particles moving on both grids can contribute to those quantities. This also means that the 
electric field advancement on the structured grid, which happens before the corresponding 
unstructured-grid advancement, cannot correctly compute the electric field on the edges of the 
wrapper cells, since we don’t yet know the current provided by particles moving in the 
wrapper cell on the unstructured grid; consequently, we need to correct those fields a 
posteriori. A final complication is that we need to properly transition particles from one grid 
to the other as they move through the wrapper cell region. These issues will be treated in detail 
in the remainder of this section. 

Additional Requirements for Field Quantities at the Grid Interface 

In a discussion of the requirements for properly tieating field quantities at the structured/ 
unstructured grid interface, we will continually be referring to values defined on both primary 
edges and nodes in the vicinity of the interface. Consequently, we will define some terms to 
locate those edges and nodes that will be used throughout the remainder of this section. First, 
all primary edges located in the wrapper outer boundary (cf. Figure 2) will be referred to as 
outer edges. All primary edges located in the wrapper inner boundary will be refe~ed to as 
inner edges. Similarly, all nodes lying in the wrapper outer (or inner) boundary will be 
referred to as outer (or inner) nudes. Finally, all primary edges that connect an inner and outer 
node will be referred to as connecting edges. Note that outer edges connect two outer nodes 
and that inner edges connect two inner nodes. These three types of edges are the set of all 
edges for which the two grids share values of electric field, and are also the edges where 
structured-grid current densities are accumulated that are initially missing contributions of 
particles moving on the unstructured grid. The two types of nodes (inner and outer) are the set 
of all nodes for which the two grids share values of charge density (charge on the unstructured 
grid) as well as the nodes at which the unstructured grid accumulates current density 
contributions that need to be included a posterior in the structured-grid solution. These are 
also the nodes at which the two grid solutions must interact to properly compute the scalar 
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measure of charge conservation F’. 

From the previous discussion of the QUICKSILVER-VOLMAX algorithm on page 30, we 
remember that the structured-grid solution for the electric field steps ahead of the unstructured 
grid-solution, which then catches up with one or more sub-timesteps. Structured-grid values 
for electric fields on the outer and connecting edges are interpolated in time at each sub- 
timestep to bound the unstructured-grid solution using (14) or (15). Using the same approach, 
charge density, which is temporally collocated with electric field, can be interpolated from the 
structured grid to the current sub-timestep of the unstructured-grid solution. Note that the 
situation for current density, which also needs to be shared between the two grids is somewhat 
different. The structured-grid solution is located at the half-timestep, meaning it is advanced 
in time one-half timestep ahead of the unstructured-grid solution. Note that this means that, 
for cases with multiple sub-timesteps (NU > 1), the unstructured-grid solution will actually 
compute currents that advance ahead of the time of the last structured-grid current density. 
Consequently, the algorithm for passing structured-grid current density information to the 
unstructured grid will actually involve extrapolation. Since extrapolation (other that constant) 
can often be unstable, we have chosen to simply use the last structured-grid value at (k+l/2)At 
for all unstructured-grid sub-timesteps from kAt to (k+l)At. Note that this constant 
extrapolation is equivalent to viewing the structured-grid current density as a piecewise- 
constant function of time, centered at the half-timestep. 

As stated earlier, the original VOLMAX algorithm interpolated the structure&grid electric 
fields at outer and connecting edges to supply boundary conditions to each sub-timestep of the 
unstructured-grid solution. After all sub-timesteps are complete, the values of the 
unstructured-~d electric field at inner connecting edges are supplied as a boundary condition 
to the structured-grid solution. (It should be noted that, although not strictly required for 
bounding the unstructured-grid solution, the connecting edge fields will be computed to have 
the same value on both grids due to the topology of the wrapper and the design of the 
unstructured-grid solver.) However, when particles are added, the structured-grid field values 
on the outer and connecting edges are not correct due to motion of particles moving in the 
wrapper layer on the unstructured grid. However, on a sub-timestep by sub-timestep basis, we 
can compute a correction to the electric field at any one of these edges, i.e., 

-k 
E; = E;+ AE; , 

where ~~ is&e co~ected &ige electric field at thejth sub-timestep, and E; is the electric field 
interpolated from the structured grid using (14) or (15). The correction afterj sub-timesteps, 
AE} is given by 

(16) 

where At/Nu is the unstructured-grid sub-timestep, Jl and J2 are the currents collected on the 
edge’s two nodes from particles moving in the wrapper cell, and ii~ is the edge-directed unit 
vector. This correction is applied to the corresponding unstructured-grid edge electric fields 
after step 4d of the QUICKSILVER-VOLMAX algorithm. At the end of the last sub-timestep, when 
the VOLMAX algorithm would normally supply unstructured-grid field values at inner 
connecting edges back to the structured grid, we also now need to supply the unstructured- 
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grid field values at outer and connecting edges, since they include the correction term (16) and 
are now correct. 

Note that for connecting edges, one of the two nodes referenced in (16) will be an inner 
node, which accumulates current both for particles moving in the wrapper layer as well as 
particles moving in unstructured-grid cells interior to the wrapper inner boundary. Since we 
want to include only the current of particles moving in the wrapper layer in this correction, we 
need to separate the current collected at inner nodes into that due to wrapper cell particles and 
that due to non-wrapper cell particles. On the other hand, the vector current density needed by 
the field algorithm [see (3)--(5)] at inner nodes needs to include both the wrapper and non- 
wrapper contributions. It should be pointed out that implementation of the capability to 
separate current and charge contributions at the inner nodes in this fashion requires significant 
additions to the VOLMAX’S database. 

Strictly speaking, since Jon the structured grid has already been used to advance the 
structured-grid electric fields at the time (16) is computed, it is not necessary to correct the 
structured-grid currents themselves but to instead correct the affected electric fields, as 
described previously. However, for diagnostic purposes, it maybe desirable to correct the 
current density on these structured-grid edges anyway. If the number of unstructured-grid sub- 
timesteps per structured-grid timestep (Nu) is odd, the unstructured-grid current density at 
sub-timestep (N@l)/2 is collocated in time with the structured-grid current density, and 
consequently that single sub-timestep’s current density contribution to (16) can be added to 
the corresponding structured-grid current. If Nu is even, the mean of the contributions from 
substeps Nu/2 and (Nu/2)+1 is collocated with the structured-grid current density, and that 
mean can be added to the corresponding structured-grid current. 

The correction described by (16) allows the structured- 
grid electric fields affected by particle motion on the 
unstructured grid to be properly determined. Similarly, we need 
to insure that electric fields computed on the unstructured grid 
that are affected by particle motion on the structured grid are 
treated properly. This translates to making sure that the vector 
current density on the unstructured grid on the inner nodes 
includes the current of particles moving in the wrapper layer of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
the structured grid. Since current density on the structured grid 
is spatially located on the cell edges (collocated with the 
electric field), currents that affect the inner nodes lie on the Figure 11. Diagram showing 
inner and connecting edges. For example, Figure 11 shows an structured-grid w rrent density 
x-y cross-section of the interface between the structured and contributions to unstructured- 

unstructured grids. Note that an implied third subscript (n) has grid ‘nner ‘odes” 
been omitted from the currents shown in the figure to simplify the notation. The unstructured- 
grid node NInner maps to the structured-grid location (l,m,n). Particles moving in wrapper cells 
on the structured grid (shaded region) contribute to the current densities bounding the wrapper 
cells but not those beyond the wrapper inner boundary; e.g., for the example in Figure 11, 
Jxl,m on the structured grid never accumulates any current the other three J’s shown (as well 
as the Jz components not shown) do accumulate current. Note that a reasonable 
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approximation to each vector component of the structured-grid current density at N1~ner is 
obtained by taking the mean of the two edges aligned with that component, i.e., 

~x(k?, n) = +J / l,nz, n) +Jx(lm TZ)I> ~x(– 

&(@2, n) = ~[J 1 m- 1, n) +Jy(lwz, n)]> ~ y(> 

~z(lw, n) = ;[JZ(lW, n - 1) +Jz(l,nz, n)] , (17) 

where we are relying that any contributions from structured-grid edges beyond the wrapper 
inner boundary are zero. Thus we obtain for the total vector current density at the inner node 
Nlnner at the jth sub-step of the kth tirnestep, 

i the vector c where Jumtmcmred S .~ent density allocated to the node by particles moving on 
the unstructured grid only, and J 1s the structured-grid correction term whose components 
are given by (17). Note that since the structured-grid current density is temporally located at 
the half-timestep, we will assume the structured-grid contribution to be constant for all sub- 
timesteps. 

As discussed previously in the section on computation of particle weights (seepage 15), 
the magnetic fields on the unstructured grid must be interpolated to the primary nodes from 
their location at the dual nodes in order to use those weights to determine the magnetic field at 
the location of any particle. This interpolation can be accomplished in a straightforward 
manner by taking an average of the magnetic fields at the nodes of the dual cell containing the 
Pm node. However, this technique cannot be used for outer (wrapper) nodes since an 
enclosing dual cell does not exist. In fact, this information can only be provided using the field 
values from the corresponding nodes of the structured grid. Since the magnetic field is 
temporally located at the half-timestep, we will, in the same spirit as our treatment of current 
density, assume that the structured-grid magnetic field at time (k+l/2)At can be assumed 
constant over the entire unstructured-grid advancement from kAt to (k+ 1)&. Consequently, it 
is sufficient to set the unstructured-grid magnetic field at the outer primary nodes from the 
corresponding values on the structured grid before proceeding to step 4 in the hybrid grid 
algorithm outlined on page 30. 

A similar analysis of the proper treatment of charge in the vicinity of the interface is 
needed. This is simpler than the analysis for current density for two reasons: first, structured- 
grid charge is not needed in the time advancement algorithm until after any corrections due to 
particles on the unstructured grid can be mad~ and second, the charge on both grids is 
spatially located at the nodes. On the other hand, charge density is stored on the structured 
grid and charge is stored on the unstructured grid, requiring a conversion from one grid to the 
other. Also, since charge density on the structured grid is temporally located on the full- 
timestep, we will need to interpolate using (14) or (15) to the sub-tirnestep of the 
unstructured-grid solution. 
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The overlap in the charge allocation for the two grids occurs on the inner and outer 
nodes. Analogous to the electric field, the structured-grid charge density is advanced in time a 
full timestep, and then the unstructured-grid charge “catches up” over one or more sub- 
timesteps. Consequently, if computations are made using inner or outer structured-grid charge 
density values bejiore that density has been corrected for charge collected on the 
corresponding unstructured-grid nodes, those computations must be corrected as well. For 
example, if we have computed the charge error measure F for outer nodes on the structured 
grid (which uses the structured-grid charge density at those nodes), we will need to correct 

that value of F to reflect the additional charge collected at the nodes on the unstructured grid 
after the unstructured-grid advancement is completed. Inspection of the hybrid algorithm 
described on page 30 reveals that we have deferred the use of structured-grid values of charge 
density in subsequent calculations until the unstructured-grid advancement (step 4 of the 
algorithm) is complete in order to avoid this complication. Consequently, we only need to 

ensure that the time-interpolated structured-grid charge density is properly included in 
computations requiring the charge in the unstmctured-grid advancement and that after that 

advancement, the charge density associated with the charge at unstructured-grid inner and 
outer nodes is added to the charge density at the corresponding nodes on the structured grid. 
Note that both these steps require the conversion of charge to charge density (and vise versa) 
by the division (multiplication) of an appropriate volume. This volume is in all cases the 
volume of the equivalent dual cell on the structured grid. 

It is worth describing in more detail the computation of the charge error measure F for 
outer nodes. This is needed on the unstructured grid as a boundary condition. Since 
QUICKSILVER’S algorithm for current allocation conserves charge exactly (within numerical 
roundoff), F is zero (or essentially zero) at all structured-grid nodes that do not overlap with 
the unstructured grid. Consequently, we do not need to include “pseudo-current” terms for any 
of the edges comected to these nodes; thus we need to include “pseudo-current” only on the 
unstructured grid. We also know that any error in charge conservation (nonzero F) at the outer 
nodes is due only to charge and current density allocated on the unstructured grid. Thus if we 
provide the unstructured grid with the value of F computed from the structured-grid electric 
field and charge density at an outer node, we can correct it at each sub-tirnestep for the charge 
collected from particles on the unstructured grid and for any electric field corrections (16) on 
the edges connected to the outer node. In QUKXCSILVER’S structured-grid algorithm, F can be 
computed at any node ( I,rn.n) on the structured grid by finite difference approximation: 

F(l,ln, n) = &[ D;;;Ex(l – 1, m, n) +D;;;EX(l, m, n.) +D:;:EY(l, m – 1, n) (18) 

“PE (l>ln>l’l)+~lmn z ‘ + ‘lmn y “mE (1 rn, n– 1) +D~~\Ez(l, m, n)] 

-p(l, rn, n) 

where the various D terms are difference coefficients, each associated with one of the edge 
electric fields that contributes to the divergence. 

Note that if (J,m,n) corresponds to an outer node of the wrapper N, some of the electric 
field edges in (16) are affected by particles in the wrapper layer of the unstructured grid. 
Consequently, we can compute F at each unstructured-grid sub-timestep as 
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F’$(N) = Fk(l, ~, ~) + &~D~~~AEj(e) – Q~(N)/V(l, ~, n) , (19) 
e 

where F~(l,nun) is computed from the structured-grid fields at time kAt using (18), Q(N) is the 
charge collected at the unstructured-grid node N at the jth sub-timestep, and V(l,rn,n) is the 
volume of the structured-grid dual cell. The sum in (19) is over all outer and connecting edges 
that are connected to node N, ~Iq is the appropriate difference coefficient for each edge from 
(18), and the AEj is the edge electric field correction given by (16). 

Although QUICKSILVER’S structured-grid algorithm does not presently use F to compute 
a “pseudo-current” correction, there are reasons why it might be desirable to do so. For 
example, one might want to switch to a less-noisy, but non-conserving algorithm, in which 
case a “pseudo-current” correction would be appropriate. In this case, it should be noted that 
only minor modifications would be required to accommodate the change. The hybrid grid 
algorithm described on age 30 would need to add a new step, immediately following step 3, 

? that would compute Fk+ , using the algorithm described in (18). In (19), Fk(l,rn,n) would need 
to be replaced by a time-interpolated value [cf. (14) or (15)] of the structured-grid F. 

Particle Handling Through the Intetface Region 

As particles move, they interact with the fields defined on the grid in two ways: they use 
the fields on the grid to determine the EM forces that control their motion and they provide 
current that affects the fields on the grid. Consequently, since the wrapper layer provides a 
one-cell thick layer of cells in both the structured and unstructured grids, particles moving in 
that layer can interact with either @d. Note, however, that once such a particle moves across 
the wrapper inner boundary, it can no longer interact with the structured grid; similarly, once 
that particle crosses the wrapper outer boundary it can no longer interact with the unstructured 
grid. Since a particle starting in given cell can always potentially leave that cell in a single 
timestep, it is impossible, with only a single-cell wrapper layer to guarantee that over one 
timestep the interaction of a particle starting in the wrapper cell in either grid can be treated 
properly on that grid throughout the entire timestep. For example, a particle starting in a 
wrapper cell of the structured grid can cross the wrapper inner boundary. To correctly account 
for its interaction with the grid, at least that portion of its path inside the inner boundary must 
be accounted for on the unstructured grid. Consequently, we have a choice: either we increase 
the thickness of the wrapper layer to two cells, or we are forced to allow for allocating at least 
a portion of a particle’s motion over a single timestep to a different grid than the particle 
started in. Note, on the other hand, that a particle initially located in an interior (non-wrapper) 
cell of the unstructured grid cannot possibly leave the unstructured grid (including the 
wrapper) in a single structured-grid timestep (remember that the structured-grid timestep can 
bean integer multiple of the unstructured-grid timestep). 

Since the VOLMAX algorithm advances the structured-grid fields a single timestep bejfore 
it advances the unstructured-grid fields with a series for one or more sub-steps, the structured- 
grid fields repeatedly leap ahead of the unstructured grid and the unstructured-grid fields are 
then “caught up” during the unstructured portion of the advancement. As a result, particles on 
the structured grid will be advanced before particles on the unstructured grid. Consequently, it 
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is exceedingly difficult to allocate the motion of an unstructured-grid particle that crosses the 
wrapper outer boundary back to the structured grid because the structured-grid current 
densities have in fact already been used to advance the structured-grid electric field. In 
contrast, it is less diflicult to allocate the motion of a structured-grid particle that crosses the 
wrapper inner boundary back to the unstructured grid because we haven’t yet even advanced 
the unstructured-grid particles for this tirnestep. 

Based upon the arguments made above, we have chosen to adopt the following model to 
deal with this issue: 

● We will continue to use a one-cell thick wrapper layer —the added complexity in adding 
an additional layer of wrapper cells in both VOLMAX and PREVOL is not worth the benefit 
gained. 

● The motion of any particle on the structured grid that crosses the wrapper inner bound- 
ary will be divided into two segments at the point where it crosses the inner boundary. 
Only the motion along the portion of the path within the wrapper layer is allocated to 
current density on the structured grid; treatment of the remainder of the path will be 
deferred for processing on the unstructured grid. 

● Any particle on the unstructured grid that is located in a wrapper cell after completion of 
all sub-steps of the current timestep will be moved to the corresponding structured-grid 
wrapper cell for further processing there on the next timestep. Consequently, no particle 
will ever start a tirnestep in an unstructured-grid wrapper cell, and therefore cannot 
leave the unstructured grid in the course of the timestep. 

The structured-to-unstructured transition is shown 
schematically in 2D in Figure 12. Note that the need for this 
transition is detected by determining that the particle’s final 
position is in a structured-grid cell that is “beyond” the wrapper 
layer (indicated by the dashed cells in the figure). This requires 
that all such structured-grid cells be tagged with this property. In 
addition, we also tag such cells with the number of an 
unstructured-grid wrapper cell that corresponds to the adjacent 
structured-grid wrapper cell. This information allows us to 
efficiently find the unstructured-grid cell into which the particle 
passes at the wrapper inner boundary using the particle location 
algorithm outlined in the previous section. 

Figure 12. illustration of 
treatment of a particie ieaving “ 
the structured grid. 

Once it has been determined that the particle moved beyond the wrapper inner boundary, 
the particle’s motion from xi to xc (see Figure 12) is allocated to the appropriate structured- 
grid current densities. We then need to save the particle’s persistent state information (charge, 
momentum, position, random number, species, grid location) for later use during the 
completion of that particle’s advancement on the unstructured grid. Note that the position 
saved is the point xc where the particle enters the unstructured grid and the grid location is the 
number of the unstructured-grid cell into which the particle immediately passes at the inner 
boundary. However, we also need to save one extra piece of information — the fraction of the 
timestep for which the particle still needs to be advanced. We assume this to be the fraction of 
the path from xi to Xf that is beyond the wrapper inner boundary ( Ixf – XCI /lxf – Xil ). This 
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extra information is needed so that the unstructured-grid particle handler can determine in 
which sub-timestep to introduce the particle and what fraction of that first sub-step to advance 
the particle. In this first sub-step, the particle is advanced as any other particle, except that we 
do not use the fields to advance the momentum, and the position is advanced only by the 
supplied fraction of the sub-timestep. Note that if there remains only one sub-step (or fraction 
thereof), this algorithm will move the particle to precisely the location originally computed by 
the structured-grid advancement, Xf Otherwise, the final position after the last sub-step will be 
somewhat different due to the refinement of the timestep on the unstructured grid. 

Some discussion of the caching strategies for the persistent data required for particles 
moving fkom the structured to unstructured grids is in order, Since the timestep fraction is also 
required for each of these particles, they do not readily fit in the existing cache structure. In 
addition, there are typically relatively few of these particles in comparison to the standard 
particle cache size. Finally, since only a subset of such particles need to be processed in a 
given sub-timestep of the unstructured-grid solver, it is convenient to put particles that will re- 
enter the simulation on different sub-timesteps in different caches in order to avoid processing 
each of them every sub-timestep. For these reasons, a separate structure of smaller caches, 
each with space for one extra word per particle, was set up. In addition, a separate list of 
caches is maintained for each sub-step. Then, at each sub-step of the unstructured-grid solver, 
the particle handler processes only those caches in the appropriate list, thus avoiding needless 
processing. 

Although the treatment of particles moving from the unstructured grid to the structured 
grid is much simpler, a few details are worth mentioning. When, at the end of the last sub- 
timestep of the unstructured-grid solver a particle is determined to be located in a wrapper 
cell, instead of storing its persistent data to a cache of already-processed unstructured-grid 
particles, we instead add that data to an appropriate cache of already-processed sfructured- 
grid particles. However, as discussed in an earlier section, the required persistent data is 
somewhat differen~ a particle’s grid location is determined by a block number and three 
coordinate indices rather than by a primary cell number. Consequently, we need to be able to 
map the unstructured-grid wrapper cell in which the particle is located to its structured 
counterpart. This is accomplished as follows. Every cell on the unstructured grid has a tag in 
the CellInfo array that indicates whether or not it is a wrapper cell. This tag is used to 
determine whether or not a particle is located within a wrapper cell. For cells that are wrapper 
cells, the CellInfo array also contains a pointer to the cell’s position on a list of all wrapper 
cells. With this pointer we can access the block number and coordinate indices that map the 
cell to the corresponding wrapper cell on the structured grid. These mapping values are 
packed into a single integer for each element of the list of wrapper cells. Note that the 
indirection to an intermediate list of wrapper cells and the packing of the values describing the 
structured-grid location are both used for purposes of efficiency in memory usage. 

39 



Testing 

The testing of the software developed in this project falls into two broad categories: 
algorithm testing and integrated testing. First, the implementations of each of the algorithms 
developed over the course of the project were tested in a stand-alone environment. For 
example, the particle location algorithm described on page 13 was tested by randomly 
choosing a cell (N) within an unstructured grid and a random position within or slightly 
beyond the range of the grid (xf). Starting from the barycenter of N (xi), we attempt to locate 
the cell containing Xfi or in the case that Xf is beyond the grid, the face and spatial location 
where the line connecting xi and xf leaves the grid. Note that this testis in general more severe 
than is required since particles can only move a limited distance in a single advancement, 
whereas this test allows for a search that could extend across the entire grid. Each algorithm 
developed, as well as the routines that initialized the extensive new data structure required by 
the new algorithms, were similarly tested. 

Although the verification of each of the new algorithms through this stand-alone testing 
provides an efficient approach to making this new code work, it is not sufficient, and must be 
augmented by integrated testing of the entire code. This is the only way to insure that all of the 
individual algorithms work together to provide 

Perhaps the most basic integrated test 
that can be performed consists of a closed 
rectangular box. Within the box is a 
structured grid containing an embedded 
unstructured grid over a smaller sub-volume 
inside the box. A 2D cross-section of this 
geometry is shown in Figure 13. A low- 
current, high-energy beam of electrons is 
emitted from one face of the box. By low- 
curren~ high-energy beam we mean that its 
current is sufficiently low relative to its 
energy that its space charge does not 
significantly affect its momentum. 
Consequently, we expect all beam particles 

the correct answer to a real problem. 
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Figure 13. 2D view of simple “beam-in-a-box” 
test simulation. 

emitted at the same time to arrive at the box’s far face at precisely the same time, with the 
same momentum, and at their original transverse (to beam direction) spatial position. This 
should be true of all particles, whether or not they cross through the unstructured grid region 
of the simulation. This tests the handling of particles in the unstructured portion of the grid as 
well as their transition between the two grid regions. Specifically, we test the following issues: 

Q that particles are properly placed in the special cache for structured-to-unstructured tran- 
sitions, 

. that particles are properly extracted from those caches at the proper sub-timestep and 
with the correct fractional sub-timestep, 

“ that the unstructured-grid particle advancement works properly, 
● that the new cache structure for unstructured-grid particles works properly, 
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. When recentering the wrapper layer horn the unstructured grid, that particles are prop- 
erly placed back into a cache of structured-grid particles, 

● that no particles become lost or otherwise “confused” throughout this entire process. 
Although this list of features tested may seem a limited subset of the features that need to be 
tested, it should be realized that it does exercise a very large fraction of the new code written, 
and in fact, some of the most complex, particularly with regard to particle cache management 
and the interaction of those caches. In fact, this test, before it was successfully completed, 
unearthed the majority of bugs found in the entire testing process. 

A logical extension of the previous testis to place a conductor inside the unstructured 
grid. Note that such an inclusion actually eliminates a portion of the unstructured mesh and 
the volume of the conductor is “outside” the grid. For example, by inserting a conducting plate 
whose cross-section intercepted some fraction of the beam traversing the unstructured portion 
of grid, we were able to test if particles encountering the grid boundary were properly 
eliminated from the simulation and that the cache management associated with that operation 
was performed correctly. Several variations of this test were successfully performed. 

The next simulation that we will describe tests 
most aspects of the interaction of particle motion with 
the EM fields. The geometry for this test problem is 
shown in Figure 14. It consists of a capacitor formed 
by two concentric cubic conductors whose sides are 
44 cm and 6 cm. A high-energy beam is injected from 
a subsurface of one of the faces in such a way that the 
entire beam is intercepted by the inner cube. The 
beam current is a 2.5 ns pulse with amplitude of one 
ampere, which will charge the inner cube with 
2.5x10-9 coulombs. This charge will cause a potential 
difference between the two cubes of a few hundred 
volts (based upon a simple estimate of the 
capacitance of this geometry). This geometry is Figure 14. 2D view of simple “beam- 
simulated in two ways: first, as a control, we use only charged capacitor” test simulation. 
a structured mesh, and second, we embed the inner 
cube in an unstructured grid which is then embedded in an interior sub-region of a structured 
mesh. The structured mesh is uniform with a cell size of two cm. The unstructured grid is 
bounded by a cubic outer wrapper boundary, concentric with the two conductors and whose 
side is 24 cm. By comparing time histories of voltages at several locations between these two 
simulations, we can verify the proper operation of several code features. Specifically, this 
comparison tested the following additional features: 

● 

● 

● 

that the fields driven by particle motion on the unstructured grid are consistent with that 
motion, 
that the issues associated with allocating current and charge in the wrapper layer on both 
grids are properly handled, 
that we properly treat the now larger set of field information that must be exchanged at 
the interface between the grids. 

The unstructured-grid version of this simulation was performed in three distinct ways. Two of 
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the simulations were done with a purely rectilinear unstructured grid that exactly matched the 
structured grid, one with NW (the number of unstructured-grid sub-steps per structured-grid 
timestep) equal to one and the other with Nu equal to three. The third simulation used a 
tetrahedral grid with -9200 primary cells; the minimum primary cell edge was slightly less 
than one cm and Nu was eight. 

First we will describe the comparison of the two hybrid-grid simulations with the 
embedded rectilinear unstructured grid to the purely structured-grid simulation (which we 
assume to be correct since the QUICKSILVER code is extremely well validated for problems of 
this type). Standard macroscopic diagnostics such as voltage, current, field energy, as well as 
particle count, charge, and energy differ by less than 0.1 percent between the three 
simulations. This is not particularly surprising since the grids are in fact the same — the only 
real difference between the structured-grid solution and the two hybrid solutions is that the 
algorithm for allocating charge is different for the unstructured grid region of the hybrid 
solutions. However, the result is significant since all of the complications of sub-timestepping 
have been tested. In addition, the hybrid-grid simulations do not conserve charge exactly, and 
the results give us our first indications that the degree of charge conservation on the 
unstructured grid is acceptable. In fact, for this test the “pseudo-cument was not used to reduce 
the error in charge conservation. 

The more interesting comparison is of the Voltage Through Beam Axis 
hybrid-tetrahedral-grid simulation to the original aoo 

purely structured-@d simulation. A comparison 
of the voltage measured through the axis of the 400 
electron beam between the inner and outer ~ 

cubical conductors is shown in Figure 15. The s 

figure shows the voltage rising until -4 ns, by 200 

which time the entire beam has been collected on 
the inner conductor. The voltage continues to o 
oscillate about a constant d.c. value due to o 5 10 15 20 25 

17me (ns) 

interaction of the current pulse with the Figure 15. A comparison of voltage through 
resonances of the structure. Note that the the beam axis between a structured-grid and 
agreement between the sirnulationS iS quite good hybrid-tetrahedral-grid simulation. 
with differences less than 570. In fact, since the 
tetrahedral mesh has finer spatial resolution (as much as a factor of two) and eight times the 
temporal resolution, one would expect a somewhat different answer. For this simulation, the 
“pseudo-current” correction for charge conservation was turned oti, consequently, the 
unstructured-grid simulation could be somewhat in error due to that effect. Figures 16 and 17 
show similar comparisons of voltage. Figure 16 shows the analogous measurement to that of 
Figure 15, but on the opposite side of the structure. Figure 17 shows a similar measurement 
between the inner and outer faces in the direction transverse to the beam (because of 
symmetry, all four such measurements should be and are the same). Note that both exhibit 
s~rnilar &havior to the voltage measured on the beam axis and the differences between the 
two solutions are comparable. 
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Figure 16. A comparison of voltage at far 
end of capacitor between a structured-grid 
and hybrid-tetrahedral-grid simulation. 

The final test to be reported here, we take 
the geometry of Figure 14, with the same hybrid- 
tetrahedral grid, but reverse the direction of the 
beam such that the electrons flow ftom a face of 
the inner cube to the corresponding face of the 
outer cube. As a result of this change, we expect 
the d.c. voltage to reverse, and oscillations should 
be similar in character. However, they should be 
somewhat different due to the fact that during the 
electron transit time at the beginning and end of 
the pulse, the spatial distribution of current 
density will be different due to the propagation 
direction of the beam. Note that this simulation 
tests the feature of beam emission on the 
unstructured grid, which up to this point has not 
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Figure 17. A comparison of voltage 
transverse to the beam axis between a 
structured-grid and hybrid-tetrahedral-grid 
simulation. 
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Figure 18. A comparison of voltage through 
the beam axis between a structured-grid 
and hybrid-tetrahedral-grid simulation for the 
reversed beam case. 

been tested. Figure 18 shows a comparison of the voltages measured along the axis of the 
beam (analogous to Figure 15 for the previous test), Note that we have reversed the sign of the 
voltage for purposes of display. Again, the agreement is comparable to the previous test and 
the voltage behaves as expected. This comparison is representative of comparisons of the 
other macroscopic observable in the simulations. For reference purposes, the same 
measurement from the original beam orientation (from Figure 15) is superimposed. 

Early Estimates of Numerical Performance 

Using timings from our various test simulations, we are able to make some estimates of 
the computational efficiency of the new particle-handling features of the code. As a point of 
reference, we observe that the cost of advancing the fields one sub-timestep for one cell of the 
unstructured grid is approximately a factor of 3-6 more expensive (depending upon the type 
of unstructured-grid cell) than a similar one-timestep advancement of the fields for one cell on 
a rectilinear structured grid. A similar comparison of the time required to advance one particle 
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one sub-timestep on the unstructured grid to the time required to advance one particle one 
timestep on the structured grid, shows the unstructured-grid advancement to be approximately 
four times as expensive. Note that the times stated for unstructured-grid field and particle 
advancement are for a single sub-timestep; consequently, the time ratios quoted must be 
multiplied by a factor of Nu if we want to know the cost ratio between the two grid types for 
the same time advancement increment. In general, we are quite pleased with the efficiency 
observed for the unstructured-grid particle advancement. since we had in fact originally 
anticipated that it might be as high as a factor of eight. Also note that no particular attempt has 
yet been made to optimize the unstructured-grid particle advancement so there are 
opportunities to improve its performance somewhat more. 
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Current Status and Future Development 

At the end of the project supporting this work, most of the basic algorithms required to 
apply the PIC method to hybrid grids have been designed, implemented, and integrated into a 
new QUICKSILVER/VOLMAX simulation code. Most, but not all, of the features of this new code 
have been successfully tested in an integrated manner for some simple test problems. This 
section of the report will detail the code’s current status by way of describing the basic 
capabilities that remain to be integrated and subsequently tested. From that point, we will 
discuss the development of some more advanced capabilities, that although beyond the initial 
scope of this project, would be useful to extend the range and/or improve the usability of the 
code. 

Basic Capabilities Not Yet Implemented 

There are two basic capabilities that have not yet been implemented into the integrated 
code. The tint is SCL emission, the algorithm for which is described in a previous section 
(page 25). As currently envisioned, this algorithm will emit from user-specified boundary 
faces, using charge information at each face’s nodes to determine the amount of charge to 
inject into the simulation. Note that most of the components required for such an algorithm 
already exist — we already compute all the terms that contribute to the calculation of charge 
to add at each emission node (13) and the beam emission algorithm contains the tools to locate 
and build lists of the surface faces that comprise an emission surface. The only new code 
remaining to be implemented is the computation of the nodal charges and their subsequent 
distribution to the associated emission faces. 

The second basic capability that remains unimplemented is the interaction of particles 
moving on the unstructured grid with symmetry boundaries, specifically those boundaries 
with mirror (also referred to as perfect-magnetic-conductor or PMC boundaries) and periodic 
symmetry. Currently, the particle advancement routine contains tentative code, as yet unused, 
to implement this interaction. We could proceed no farther, because the support for these 
boundaries in the VOLMAX field solver was not available during the project period. However, 
the mirror algorithm became available about one month after our project’s completion and we 
expect the periodic algorithm to be ready in the very near future. We now need to adjust our 
tentative code to reflect the final details of the field algorithm’s mirror implementation and test 
it. When the periodic boundary is available, we will need to repeat this process. 

Although presently implemented, we are not currently satisfied with all aspects of the 
performance of the “pseudo-current” charge conservation algorithm. In our previous 
discussion (see page 22), we outlined two distinct approaches to compute the vector VF at 

the pnmmy nodes and also two distinct approaches to computing the dual-face-normal 
components of VF. In our current implementation, we use the divergence integral algorithm 
(8) to compute the primary node vector, and use the node-average technique (10) to obtain the 
face normal components. After observing the performance, we believe that the alternate 
approach to computing the face-normal components of the gradien~ using (9) and (11), will 
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provide much better accuracy and finer resolution of its spatial variation. We would also like 
to assess the alternate “least-squares” technique for computing the primary node vectors from 
the edge-directed components defined by (9). 

Advanced Development for the Future 

Most of the development issues that will need to be addressed in the future are related to 
the ease-of-use for the code as a production simulation tool. These divide into three broad 
categories: 

● Problem definition and setup, 
● Integrated diagnostic capability, 
● Capability and performance for large and/or complex simulations. 

We will discuss each area in turn. 

Presently, in order to perform a simulation, we must setup the unstructured portion of 
the mesh using the I-DEAS CAD package. Concurrently, the structured portion of the grid must 
also be constructed using QuxmsmwR’s preprocessor, MERCURY. The user is entirely 
responsible for insuring that the overlapping wrapper layers of the two grids are totally 
consistent (not an easy task for a simulation with any complexity). In addition, it is also the 
user’s responsibility to insure that any geometric structure is also consistent between the two 
grids. Note that such structure must be separately provided to both I-DEAS and MERCURY by 
significantly different means. It is highly desirable to remove as much of this burden as 
possible from the user, and place it upon the tools themselves. This will require significant 
changes to both MERCURY and our customizations of I-DEAS or else we will need to find or 
develop a single integrated tool to build the entire hybrid grid as a single entity. 

A related issue is that of diagnostics. For example, consider the work that is now 

required to obtain something as simple as a voltage horn a hybrid grid simulation, such as 
those shown in Figures 15–18. Since the voltage is obtained by integrating the electric field 
along a path, if that path lies in both grids, we need to include the contribution of each sub- 
path. Presently, we need to specify the structured-grid portion of the path to MERCURY, which 
causes QUICKSILVER to compute that quantity and store the accumulated time history in a PFF 
file. Similarly, we need to also identify the unstructured-grid portion of the path in I-DEAS by 
tagging each node of the edges that comprise that path with a special tag. For a complex 
system this can be a laborious and error-prone process. Once these nodes are tagged, VOLMAX 
can obtain the integral over its sub-path at each timestep. These are then saved, each in its own 
file and in a format different from the PFF format used for the structured-grid data, for post- 
processing. After the simulation is complete, the user must, by using the data manipulation 
capabilities of the post-processing tool, e.g., PFIDL, read in both components of the diagnostics 
from their respective sources and then combine them, with the proper signs, into the single 
desired time history. This is just an example of several diagnostics, such as energy and flux 
integrals, snapshots in time of planes of field data, etc., that are presently quite difficult to 
obtain. 

, 

It should be noted that we have begun to design and develop the required tools to 
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simplify this procedure. For instance, for the example just described we have outlined a 
procedure by which the integration path could be specified to MERCURY alone, which would 
know how to subdivide the path into its structured-grid and unstructured-grid portions. 
QUICKSIL~R could then find the best fit to the unstructured-grid portion of the requested path 
by constructing a sequence of connected edges through the unstructured grid. Using this 
information, its routines to gather history information could be generalized to access and 
include the unstructured-grid portions of the integral with the structured-grid portions, and 
finally write only one set of data to one PFF file. We have presently written the routines that 
will allow MERCURY to subdivide the path and to construct the unstructured-grid sub-path, but 
need to integrate them, along with the other needed modifications, in the code. A similar tactic 
could be used to integrate most if not all diagnostics for hybrid grid simulations. 

As a final poin$ we will touch on the issue of performing large simulations. Presently, 
both the QUICKSH-YER and VOLMAX codes are being ported to run on Sandia’s Intel TeraFlop23 
distributed-memory, massively-parallel supercomputer. We need to include the new features 
that have been added by this project to support PIC techniques on hybrid grids into the parallel 
irnplementations of QUICKSILVER and VOLMAX. 
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